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CHEMICAL POTENTIAL TENSOR

FOR A TWO-PHASE CONTINUOUS MEDIUM MODEL

UDC 539.3:536.4M. A. Guzev

Relations for jumps of thermodynamic variables with allowance for inertial terms are derived under
conditions of thermal equilibrium and in the absence of dissipation on the interphase surface. The
notion of the chemical potential tensor is generalized for this case within the framework of the elastic
continuous medium model. A thermodynamically well-posed definition of the chemical potential tensor
is proposed for a class of two-phase models of deformable solids.
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Introduction. Numerous experimental investigations show that almost all materials experience phase
transitions under thermomechanical actions. In the macroscopic theory of continuous media, the origination of
regions of the new phase is interpreted as the emergence of an interphase boundary, which is a discontinuity surface
for certain thermodynamic potentials of the medium and their derivatives. These discontinuities have been well
studied for the case of thermal and mechanical equilibrium of the liquid (gas) phases. One difficulty in studying
phase transformations in solids is the necessity of using a tensor set of variables for the description of the state
of materials, e.g., the stress and strain tensors. In contrast to the classical case of equilibrium of the liquid (gas)
phases, one has to avoid the traditional concepts of some quantities, in particular, one has to take into account the
tensor character of the chemical potential on discontinuity surfaces. It was Gibbs who showed long ago [1] that
a soluble solid in the state of mechanical and chemical equilibrium with its solutions at different pressures should
obey the conditions of identical chemical potentials in contacting phases, and the equilibrium conditions derived by
Gibbs show that the introduced chemical potential of the motionless component depends on the choice of the spatial
direction: position of the solid-body boundary. Though Gibbs did not clearly stipulate the necessity of introducing
the notion of the chemical potential tensor, this notion is naturally introduced in the theory of heterogeneous phase
equilibrium of single-component substances [2], and the corresponding approach is commonly called the theory of
the local chemical potential.

On the other hand, formation of one or several phases is a consequence of physical and chemical trans-
formations in the material and can proceed in the entire volume of the body. The directed character of these
transformations in materials depends on their mechanical state determined by defining the stress tensor as a func-
tion of spatial coordinates and time. Beginning from 1960s, this made chemists consider the chemical potential as
a tensor object, regardless of availability of the selected surface; the corresponding approach is commonly called
the theory of the absolute chemical potential [3]. The main difficulty in determining the chemical potential tensor
is the fact that, if the chemical potential is a tensor, then the thermodynamically conjugate quantity (number of
moles) is also a tensor. From the thermodynamic definition of the chemical potential, however, it follows that the
number of moles is an obviously scalar quantity. Rusanov [3] suggested that the change in the number of moles
could be attributed a directed character; the resultant anisotropy of the chemical potential tensor is determined by
anisotropy of the stress tensor.
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In the theories of the local and absolute chemical potentials, the problem of defining the chemical potential
tensor was considered in the quasi-static approximation. It is shown in Sec. 1 of the present paper that the definition
of the chemical potential tensor introduced in the theory of heterogeneous phase equilibrium [2] should be corrected
if inertial terms are taken into account in deriving relations on the interface under conditions of thermal equilibrium
and in the absence of dissipation. For the elastic continuous medium model, the correlation between the corrected
definition of the chemical potential tensor and the corresponding definition in the theory of the absolute chemical
potential is demonstrated in Sec 2. In a particular case of mechanical equilibrium, both definitions yield the known
condition of continuity of the normal component of the chemical potential tensor [2, 4]. A thermodynamically
well-posed variant of introduction of the chemical potential tensor for the class of two-phase models of deformable
solids with arbitrary strains is described in Secs. 3–5.

1. Relations on the Interphase Surface. It is well known [4] that the following relations for the jumps
in quantities in Eulerian variables are valid for the interphase surface (interface) moving with a velocity L relative
to the observation point:

[ρ(L− vn)] = 0; (1)

[ρ(L− vn)vi] + [σik]nk = 0; (2)

[ρ(L− vn)(u+ |v|2/2)] + [σikv
i]nk = [J (q)

k ]nk; (3)

[ρ(L− vn)s] = [J (q)
k /T ]nk −R; (4)

[ρ(L− vn)F i
k] + [ρviF l

k]nl = 0. (5)

Here ρ is the density, σik is the stress tensor, vi are the velocity components, vn = vknk, where nk are the
components of the external (relative to one of the phases) unit normal to the discontinuity surface with respect to
the observation point, u and s are the specific internal energy and entropy, J (q)

k are the components of the heat-flux
vector, R is the entropy production on the jump, F i

k = ∂xi/∂ξk determines the strain gradient, and relation (5)
indicates the absence of a singular source of strain incompatibility. The symbol [f ] = f |+ − f |− indicates a jump
in a quantity f on the sides of the discontinuity surface.

Let us consider a phase transition for which [T ] = 0 and R = 0. In this case, Eq. (1) yields

ρ(L− vn) = m = const.

To calculate the jumps in the product of quantities in (2)–(5), we use the formula

[ab] = [a]b|− + [b]a|+. (6)

Then, Eq. (2) is written in the form

[σik]nk = −m[vi]. (7)

Multiplying Eq. (5) by ni and summing in terms of i, we obtain L[ρF i
k]ni = 0, which means that the components

Sk = ρF l
knl of the vector S on the discontinuity surface are continuous. Then, the jump of the strain gradient is

[F i
k] = hiSk, hi = −[vi]/m. (8)

Let us consider relations (3) and (4). Eliminating the normal component of the heat-flux vector from these
equations, we obtain

m[(f + |v|2/2)] + [σikv
i]nk = 0, (9)

where f = u− Ts is the density of free energy of the continuous medium. Using Eq. (6), we write the second jump
in Eq. (9) as follows:

[σikv
i]nk = [σiknk]vi|− + [vi]nkσik|+. (10)
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Applying formula (7) to the first term in Eq. (10), we obtain

[σikv
i]nk = −m[|v|2] + [vi](nkσik|+ +mvi|+).

The velocity jump is determined from Eq. (8):

[vi] = −m[F i
k]Sk/|S|2. (11)

By means of direct calculations, we can verify that

[vi](nkσik|+ +mvi|+) = −m{[F i
kSknlσli] +m[F i

kSkv
i]}/|S|2.

Then, relation (9) becomes

m[f ]−m{[|v|2]/2 +m[F i
kSkv

i]/|S|2 + [F i
kSknlσli]/|S|2} = 0. (12)

Since

[|v|2]/2 = [vk]vk|+ − [vk][vk]/2,

m[F i
kSkv

i]/|S|2 = −[vk]vk|+ +mSk[vi]F i
k|−/|S|2,

the sum of the two first terms in braces in Eq. (12) with allowance for Eq. (11) is

[|v|2]/2 +m[F i
kSkv

i]/|S|2 = −m2[F i
kSkF

i
mSm]/(2|S|4). (13)

Summarizing all calculations, we finally obtain

m[f ]−m[F i
kSknlσli]/|S|2 +m3[F i

kSkF
i
mSm]/(2|S|4) = 0. (14)

Relation (14) is an analog of Gibbs’ classical condition of phase equilibrium [1] with allowance for dynamics
of the medium. The condition of continuity of the normal component of the Eulerian chemical potential tensor in
equilibrium arises if the last term in Eq. (14) is ignored, which corresponds to the formal transition m→ 0. Indeed,
neglecting the last term and using the definition of quantities in Eq. (14), we obtain

m{[u− Ts− F i
kF

j
knjnlσli/(ρF i

kF
j
kninj)]} = 0. (15)

Since F i
kF

j
k = gij , Eq. (15) is equivalent to

m{[u− Ts− gijnjnlσli/(ρgijninj)]} = 0. (16)

We introduce the tensors

µik = −σik/ρ+ δik(u− Ts), M j
i = gjkµik/(gpqnpnq). (17)

The tensor µj
k coincides with Bowen’s symmetric chemical potential tensor [5]; then, it follows from here and from

Eq. (16) that the normal component of the tensor M j
i is continuous:

m[niM
j
i nj ] = 0. (18)

This relation shows that the condition of continuity of the normal component of the chemical potential tensor under
equilibrium conditions arises as a requirement of vanishing of the leading term in the expansion with respect to the
small parameter m.

Allowance for dynamics of the medium is responsible for an additional contribution (proportional to m3) in
the energy condition (14) on the discontinuity, as compared to the equilibrium situation. This makes us modify
the definition of the chemical potential tensor proposed in the theory of the local chemical potential [4]. As this
definition is based on the use of the discontinuity condition (18), its formal generalization for the discontinuity (14)
yields the condition of continuity of the normal component of the following tensor Xj

i :

m[niX
j
i nj ] = 0, Xj

i = gjkxik/(gpqnpnq),

xik = −σik/ρ+ δik(u− Ts) +m2gik/(2ρ2gpqnpnq).
(19)

We will further show how it is possible to introduce the chemical potential tensor within the framework of the
elastic continuous medium model.
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2. Chemical Potential of an Elastic Medium. The volume density of energy Eel of an elastic medium
is a function of specific entropy s, components of the mass flux jk = ρvk, and components of the metric tensor gij

characterizing the medium strain. Let us write the expression for the total differential of energy:

dEel = µi
j dgij + T d(ρs) + vk djk. (20)

Here, we used Gibbs’ identity T = ∂Eel/∂ρs and the fact that the derivative of energy with respect to momentum
is the velocity of motion. On the other hand, the energy equals Eel = |j|2/(2ρ) + ρu, where u = u(s, gij) is the
specific internal energy, and

dEel = ρ
∂u

∂gij
dgij + ρT ds+ dρ

(
u− Ts− |v|2

2

)
+ vk djk. (21)

The law of conservation of mass ρ = ρ0

√
det ‖gij‖ yields dρ = ρgij dgij/2, where gij are the components of the

inverse metric tensor. As we consider a model of an elastic continuous medium, the equation of state is given by
the relation [6]

ρ
∂u

∂gij
= −1

2
σjkg

ki.

Combining it with Eq. (21), we obtain

dEel = (1/2)gik(−σjk + ρδjk(u− Ts− |v|2)/2) dgij + T d(ρs) + vk djk. (22)

A comparison of Eqs. (22) and (20) yields the following expression for µi
j :

µi
j = gikρµjk/2, µjk = (−σjk/ρ+ δjk(u− Ts− |v|2/2)). (23)

It is seen from here that Eq. (23) coincides with Eq. (17) in equilibrium, i.e., for v = 0. Therefore, the
tensor µik in Eq. (23) is the chemical potential tensor introduced regardless of the presence or absence of the
selected surface, and its anisotropy is completely determined by anisotropy of the stress tensor. If the mechanical
state of the medium is isotropic and equilibrium, i.e., σik = −δikp and v = 0, then we have

µik = δik(u+ p/ρ− Ts) = δikψ.

The quantity ψ determines the specific thermodynamic potential. It is known that the chemical potential can be
treated, with accuracy to a constant, as a specific thermodynamic potential. Hence, in the mechanically isotropic
equilibrium state, all eigenvalues of the tensor µik are identical and are determined by a scalar quantity, which is
commonly called the chemical potential.

Though the chemical potential tensors defined by relations (17) and (23) coincide in the limiting case of
mechanical equilibrium, it is not reasonable to consider Eq. (23) as a generalization of the definition of the chemical
potential tensor to the dynamic case, because the jump of the normal component (23) on the phase surface does
not coincide with the jump (19).

A possible way out of this situation is to consider an elastic material with an emerging new phase as a
two-phase continuous medium. Formation of the new phase can be represented as an elementary excitation with a
pulse p in the first phase. We pass to a reference system K0, where the velocity of the first phase equals zero, and
its pulse is p. The values of the energy E in the coordinate system fitted to the observation point are related to its
values in the system K0 by the following conversion formulas known from mechanics:

E = |j|2/(2ρ) + jkpk/ρ+ ρu. (24)

The energy u is considered as a function of the metric tensor gij and specific entropy s. Further calculations are
similar to those performed at the beginning of the present Section; therefore, we omit them and find that E satisfies
the thermodynamic relation

dE = (1/2)ρgik(−σjk/ρ+ δjk(u− Ts− |v|2/2)− vkpk/ρ) dgij + T d(ρs) + (vk + pk/ρ) djk.

318



We introduce the tensors zik and Zj
i , assuming that

zik = −σik/ρ+ δik(u− Ts− |v|2/2− vsps/ρ), Zj
i = gjkzki/(gpqnpnq). (25)

Under conditions of mechanical equilibrium, we have v = 0 and zik = xik. We choose the components pk of the
pulse p in the form

pi = mgiknk/(gpqnpnq).

Combining Eqs. (25) and (13) yields [niZ
j
i nj ] = [niX

j
i nj ] = 0. Thus, the normal component of the tensor Zj

i is
continuous, and zik is a “candidate” for the chemical potential tensor. It was shown above that xik [see Eq. (19)]
can also be considered as a chemical potential tensor. Nevertheless, the local values of zik and xik do not coincide
in the general case: only their static contribution coincides.

The fact of ambiguous introduction of thermodynamic potentials is already known in the scientific litera-
ture [6]. It turns out that this fact can be useful for correcting the equations of state of the continuous medium. In
particular, such a correction in [6, § 31] allows one to change the equation of state of the nonlinear elasticity theory
so that it becomes rigorously convex without changing the smooth solutions of the elasticity theory and to bring
the system of conservation laws to a symmetric hyperbolic form.

In the case of formation of a new phase considered here, this process should be modeled within the framework
of the formal description of mechanics of heterogeneous media. Deriving only balance equations of conservation in
a very generic form does not present particular interest for mechanics of mixtures, because particular applications
of these equations are associated with the use of certain hypotheses on phase interaction. Below, we will show how
the chosen hypothesis determines the structure of the chemical potential tensor that appears in the theory.

3. Governing Equations. First, we write the balance equations of conservation for a two-phase continuous
medium. Such a medium obeys the law of conservation of mass

∂ρ

∂t
+
∂jk

∂xk
= 0, (26)

where the mass flux equals the sum of mass fluxes associated with each phase: jk = ρ1v
k
1 +ρ2v

k
2 . The coefficients ρ1

and ρ2 are the densities of the phases, and their sum equals the density of the material: ρ = ρ1 + ρ2.
The law of conservation of momentum is described by the equation

∂ji

∂t
+
∂Πik

∂xk
= 0, (27)

where Πik = ρ1v
i
1v

k
1 + ρ2v

i
2v

k
2 − σik is the momentum-flux density tensor. The equation of conservation for the

energy E and entropy s is written in the divergent form as

∂E

∂t
+
∂Qk

∂xk
= 0; (28)

∂ρs

∂t
+
∂Jk

∂xk
= D, D ≥ 0, (29)

where Qk and Jk are the components of the energy-flux vector and the entropy-flux vector, and D is a dissipative
function.

The equations formulated above should be supplemented by the equation for the second phase velocity vk
2

and for the quantity characterizing material strains. The equation for the velocity vk
2 is written in the form

∂vk
2

∂t
+ vi

2

∂vk
2

∂xi
= Ik. (30)

In the right side of Eq. (30), we introduced a source for the second phase. It is shown below that the structure of this
source is determined by the requirement of representing the dissipative function as a bilinear form of thermodynamic
forces and fluxes.

To characterize the strain of the continuous medium, we can introduce the strain tensor gij . If we con-
sider each phase separately, the strain tensor within the framework of the classical model of an elastic medium is
determined via the distortion pα

i :

gij = pα
i p

α
j , pα

i =
∂ξα

∂xi
,

dξα

dt
=
∂ξα

∂t
+ vk ∂ξ

α

∂xk
= 0.
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This yields the equation for the classical distortion in the form

∂pα
i

∂t
+

∂

∂xi
vkpα

k = 0. (31)

In the general case, one should take into account the relative motion of the phases to describe the heterogeneous
structure of the medium. The use of this fact in particular models is associated with additional hypotheses on the
mutual deformation and motion of the phases. A possible approach to this problem is indicated, e.g., in [7]: the
authors proposed to introduce the external strain-rate tensor characterizing displacement of particles of a selected
volume and the true strain-rate tensor taking into account the structure of the components of the mixture.

The idea of calculating strain characteristics via the velocity field can be used in formulating the transport
equations in the two-phase model. We assume that the characteristic of strain of a two-phase medium is chosen to
be the distortion matrix Pα

i determined as the solution of the differential equation of the type (31):

∂Pα
i

∂t
+

∂

∂xi
ukPα

k = 0. (32)

Here, the velocity components uk along which Pα
i is transferred are unknown. It directly follows from Eq. (32) that

the solution Pα
i is generated by a certain vector field ηα: Pα

i = ∂ηα/∂xi. Nevertheless, ηα cannot be identified
with the Lagrangian coordinate of any phase of the mixture, because the components uk are to be determined.
The constraints imposed on uk are related to the kinematic and thermodynamic well-posedness of the relations
obtained. A natural kinematic requirement is satisfaction of the law of conservation of mass (26). In the classical
elastic medium model, the integrated form of this law is ρ = ρ0|det ‖Pα

i ‖|. If we differentiate this relation with the
use of Eq. (32) and compare the result with Eq. (26), we find that the components uk are determined via the mass
flux as follows:

uk = jk/ρ.

Hence, the velocity u coincides with the mean-mass velocity of the mixture. In the general case, u can differ from
the mean-mass velocity, but this case is outside the scope of the present paper.

4. Dissipative Function of a Two-Phase Medium. Let us pass to the reference system K0, where the
velocity vk

2 equals zero. In this reference system, the medium moves with the velocity wk = vk
1 − vk

2 . The values
of the mass and energy fluxes in the observation-point-fitted coordinate system are related to their values in the
system K0 by the following conversion formulas known from mechanics:

jk = ρvk
2 + jk

0 , jk
0 = ρ1w

k, E = ρ|v2|2/2 + jk
0 v

k
2 + E0. (33)

The energy E0 is considered as a function of distortions Pα
i , specific entropy s, and jk

0 and satisfies the thermody-
namic relation

dE0 = µα
i dP

α
i + T d(ρs) + wk djk

0 , (34)

written in the form

∂E0

∂t
= µα

i

∂Pα
i

∂t
+ T

∂ρs

∂t
+ wk ∂j

k
0

∂t
.

We perform further calculations as follows. We substitute E from Eq. (33) into the equation of conservation
of energy (28); the derivative ∂E0/∂t is expressed in accordance with Eq. (34) in which the derivative ∂ρs/∂t is
eliminated with the help of Eq. (29). Then, Eq. (28) is reduced to

µα
i

∂Pα
i

∂t
+ T

(
D − ∂Jk

∂xk

)
+ wk ∂j

k
0

∂t
+
∂

∂t

(ρ|v2|2

2
+ jk

0 v
k
2

)
= −∂Q

k

∂xk
.

From here, we find

D =
∂

∂xk

(
Jk − Qk

T

)
− 1
T 2

∂T

∂xk

∂Q

∂xk
− 1
T
µα

i

∂Pα
i

∂t
− 1
T
wk ∂j

k
0

∂t
− 1
T

∂

∂t

(ρ|v2|2

2
+ jk

0 v
k
2

)
. (35)

Let us consider two last contributions in Eq. (35). The derivatives of ρ with respect to time are eliminated with the
help of Eq. (26), and the derivative of jk

0 is expressed in terms of the derivatives of ρ and jk, in accordance with
Eqs. (33) and (27). As a result, we obtain
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− 1
T
wk ∂j

k
0

∂t
− 1
T

∂

∂t

(ρ|v2|2

2
+ jk

0 v
k
2

)
=

∂

∂xk

1
T

(jk|v2|2

2
+ ρ1v

k
1v

i
1w

i
)

+
1
T 2

∂T

∂xk

(jk|v2|2

2
+ ρ1v

k
1v

i
1w

i
)
− 1
T
jk ∂

∂xk

( |v2|2

2
− vi

1v
i
2

)
− 1
T

∂vk
1

∂xk
(ρ1v

k
1v

i
1 + ρ2v

k
2v

i
2)−

1
T
vk
1

∂σi
k

∂xi
+
ρ2

T
wk ∂v

k
2

∂t
.

Using Eq. (32), we find the convolution µα
i ∂P

α
i /∂t:

− 1
T
µα

i

∂Pα
i

∂t
=

∂

∂xk

( 1
T
ukµα

i P
α
i

)
+

1
T 2

∂T

∂xk
ukµα

i P
α
i +

1
T

∂uk

∂xi
(µα

i P
α
k − δikµ

α
sP

α
s )− 1

T
Pα

i u
k ∂µ

α
i

∂xk
.

We identify the pressure p and the deviatoric contribution in the stress tensor, assuming that σi
k = τ i

k − δi
kp. Then,

we obtain
vk
1

T

∂σi
k

∂xi
=

∂

∂xi

( 1
T
vk
1τ

i
k

)
+

1
T 2

∂T

∂xi
vk
1τ

i
k −

1
T
τ i
k

∂vk
1

∂xi
− 1
T
vk
1

∂p

∂xk
.

Summing up the resultant relations, we obtain the following expression for the dissipative function:

D =
∂

∂xk

(
Jk +

1
T

(
−Qk +

jk|v2|2

2
+ ρ1v

k
1v

i
1w

i + ukµα
i P

α
i − vi

1τ
i
k

))
+

1
T 2

∂T

∂xk

(
−Qk +

jk|v2|2

2
+ ρ1v

k
1v

i
1w

i + ukµα
i P

α
i − vi

1τ
k
i

)
+

1
T
vk
1

∂p

∂xk
− uk

T
Pα

i

∂µα
i

∂xk
+

1
T

∂uk

∂xi
(µα

i P
α
k − δikµ

α
sP

α
s )

− 1
T
jk ∂

∂xk

( |v2|2

2
− vi

1v
i
2

)
− 1
T

∂vk
1

∂xk
(ρ1v

k
1v

i
1 + ρ2v

k
2v

i
2) +

τ i
k

T

∂vk
1

∂xi
+
ρ2

T
wk ∂v

k
2

∂t
. (36)

We introduce p by the formula

E0 + p = µα
i P

α
i /3 + ρ1|w|2 + Tρs. (37)

Differentiating Eq. (37) and using Eq. (34), we obtain the expression for the differentials of thermodynamic param-
eters

dp = (1/3)Pα
i dµα

i − (2/3)µα
i dP

α
i + ρs dT + jk

0 dw
k. (38)

This allows us to write the contributions in Eq. (36) as follows:

1
T
vk
1

∂p

∂xk
− uk

T
Pα

i

∂µα
i

∂xk
= − ∂

∂xk

(2
3
vk
1

T
µα

i P
α
i

)
+
∂vk

1

∂xk

2
3T

µα
i P

α
i

− 2
3T 2

∂T

∂xk
vk
1µ

α
i P

α
i +

1
T

(vk
1 − uk)Pα

i

∂µα
i

∂xk
+

1
T
ρsvk

1

∂T

∂xk
+ ji

0

∂wi

∂xk
vk
1 . (39)

Then, the dissipative function (36) becomes

D =
∂

∂xk

(
Jk +

1
T

(
−Qk +

jk|v2|2

2
+ ρ1v

k
1v

i
1w

i + ukµα
i P

α
i − 2

3
vk
1µ

α
i P

α
i − vi

1τ
i
k

))
+

1
T 2

∂T

∂xk

(
−Qk +

jk|v2|2

2
+ ρ1v

k
1v

i
1w

i + ukµα
i P

α
i − 2

3
vk
1µ

α
i P

α
i − vi

1τ
k
i + ρsTvk

1

)
+

1
T

(vk
1 − uk)Pα

i

∂µα
i

∂xk
+

1
T

∂uk

∂xi
(µα

i P
α
k − δikµ

α
s P

α
s ) +

τ i
k

T

∂vk
1

∂xi
+

2
3T

∂vk
1

∂xk
µα

i P
α
i

+
1
T
ji
0

∂wi

∂xk
vk
1 −

1
T
jk ∂

∂xk

( |v2|2

2
− vi

1v
i
2

)
− 1
T

∂vk
1

∂xk
(ρ1v

k
1v

i
1 + ρ2v

k
2v

i
2) +

ρ2

T
wk ∂v

k
2

∂t
. (40)
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After simple calculations, we obtain

ji
0

∂wi

∂xk
vk
1 − jk ∂

∂xk

( |v2|2

2
− vi

1v
i
2

)
− ∂vk

1

∂xk
(ρ1v

k
1v

i
1 + ρ2v

k
2v

i
2) = ρ2v

k
2w

i ∂v
i
2

∂xk
.

This term is grouped with the last contribution in Eq. (40) to the expression

ρ2

T
wk

(∂vk
2

∂t
+ vi

2

∂vk
2

∂xi

)
.

In accordance with the standard scheme of nonequilibrium thermodynamics, the dissipative function should
be presented as a bilinear form of thermodynamic forces and fluxes [8]. For this purpose, we present the source in
Eq. (30) as

Ik =
1
ρ

∂Γk
q

∂xq
− Pα

i

ρ

∂µα
i

∂xk
,

where the functions Γk
q are to be determined. Since (vk

1 − uk) = wkρ2/ρ, we obtain

wkρ2

T

(∂vk
2

∂t
+ vi

2

∂vk
2

∂xi

)
+
vk
1 − uk

T
Pα

i

∂µα
i

∂xk
=
wkρ2

Tρ

∂Γk
q

∂xq

=
∂

∂xi

(wkρ2

Tρ
Γk

q

)
+

ρ2

ρT 2

∂T

∂xq
Γk

qw
k −

Γk
q

T

∂

∂xq

(wkρ2

ρ

)
.

We choose the flux Jk in the form

Jk =
1
T

(
Qk − jk|v2|2

2
− ρ1v

k
1v

i
1w

i − ukµα
i P

α
i +

2
3
vk
1µ

α
i P

α
i + vi

1τ
i
k −

ρ2

ρ
Γq

kw
q
)
.

In the approximation of linear relations, we assume that

Jk − ρsvk
1 = −λ ∂T

∂xk
, λ ≥ 0.

As a result, relation (40) is written as

D =
λ

T

∂T

∂xk

∂T

∂xk
+

1
T

∂vk
1

∂xi

(
µα

i P
α
k − 1

3
δikµ

α
s P

α
s + τik

)
+

1
T

(µα
i P

α
k − δikµ

α
sP

α
s − Γk

i )
∂

∂xi

(ρ2w
k

ρ

)
.

In such a form, the dissipative function is presented as a bilinear form of thermodynamic forces and fluxes: D(X)
= XiYi and ∂D/∂Xi = Y i.

5. Chemical Potential of a Two-Phase Dissipation-Free Medium. Further detalization of the
relations obtained is associated with choosing the energy E0 and the dissipative function D. Let E0 be prescribed,
and the dissipative function be zero. This yields the following relations:

τik = −µα
i P

α
k + (1/3)δikµα

sP
α
s , Γk

i = µα
i P

α
k − δikµ

α
sP

α
s .

The convolution µα
sP

α
s is calculated in accordance to Eq. (37); then, we have

µα
i P

α
k = −σik + δik(E0 − ρTs− ρ1|w|2). (41)

We introduce the chemical potential tensor µi
j of a two-phase dissipation-free medium via µα

i . For this purpose,
we require satisfaction of the equality µi

j dGij = µα
i dP

α
i , where Gij = Pα

i P
α
j , which is equivalent to the transition

from the kinematic set of variables Pα
i to gij in the energy E0 (34). This yields µα

j = 2µi
jP

α
i .

We introduce the matrix Qs
α inverse to Pα

i : Pα
i Q

s
α = δs

i ; then, Eq. (41) yields

µα
i = Qk

α(−σik + δik(E0 − ρTs− ρ1|w|2))

and the chemical potential tensor µi
j of the two-phase medium

µi
j = (1/2)Gik(−σjk + δjk(E0 − ρTs− ρ1|w|2)).

Anisotropy of the tensor µi
j is determined by anisotropy of the stress tensor, but an important factor for a two-phase

medium is the relative motion of the phases.
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In a particular case, E0 depends on the tensor gij via its determinant g, which corresponds to a two-phase
liquid. During calculations, one can easily find that µi

j has the following structure: µi
j = ρµgij/2, where µ is a

certain scalar function. Then, the thermodynamic relations (34) and (38) are reduced to

dE0 = µdρ+ T d(ρs) + wk djk
0 , dp = ρ dµ+ ρs dT + jk

0 dw
k.

These formulas for thermodynamic quantities coincide, in particular, with the corresponding formulas for the model
of superfluid helium [9], and the function µ has the meaning of a chemical potential that determines the source (30)
for the second phase: Ik = −∂µ/∂xk.

Conclusions. The scheme of the classical formalism of nonequilibrium thermodynamics is generalized
in the present paper to construct two-phase models of deformable solids, which makes it possible to suggest a
thermodynamically well-posed definition of the chemical potential tensor. A particular choice of the model is
determined by specifying interaction between the phases and the dissipative function.
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